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Temperature dependence of sound velocity in liquid metals
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In this article, we report comparisons between theoretical and experimental values of the
velocity of sound and its temperature coefficient at the melting temperature for 41 liquid metals
using a number of model theories.
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1. Introduction

Except in a few anomalous metals like Si, Ge, Sb, Te, Ce and Pu, the velocity of sound c
decreases slowly with increasing temperature T in liquid metals. The logarithmic
temperature derivative ð@ln c=@ln TÞP is typically between �0.1 and �0.3 at the melting
temperature Tm. As a consequence, accurate values of the temperature coefficient of
sound velocity ð@c=@TÞ)P require measurement of sound velocities over extended
temperature ranges. The wide variation in reported values of ð@c=@TÞP for a given liquid
metal is probably attributable to sound velocity measurements carried out over limited
temperature ranges. The purpose of this article is to investigate the temperature
dependence of the velocity of sound in liquid metals in terms of a number of model
theories and to compare ð@c=@TÞP values obtained with critically appraised literature
values.

2. Model theories

2.1. Tsagareishvili’s approach

Tsagareishvili [1] has developed a quasi-thermodynamic approach, which allows
approximate integration of exact thermodynamic equations. Here, ð@c=@TÞP may be
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expressed by logarithmic differentiation of the exact relation between the adiabatic bulk

modulus BS, sound velocity c and density �

BS ¼
1

�c2
ð1Þ

@ ln c

@T

� �
P

¼
1

2

@ ln BS

@T
�
@ ln �

@T

� �
P

ð2Þ

Using the substitutions [2],

@lnBS

@T

� �
P

¼ �2�� ð3Þ

@ln �

@T

� �
P

¼ �� ð4Þ

equation (2) may be written as

@c

@T

� �
P

¼ ��c ��
1

2

� �
ð5Þ

In equations (5) and (6), � is the expansivity, CP the isobaric heat capacity and � the

Grú́neisen parameter defined by

� ¼
�c2

CP
ð6Þ

Using equations (5) and (6) we calculate ð@c=@TÞ P at the melting temperature for the 41

liquid metals for which sound velocity versus temperature data are available in the

literature. The results are summarised in table 1.

2.2. Gitis and Mikhailov’s approach

From statistical mechanical considerations, Gitis and Mikhailov [3] have expressed the

velocity of sound in terms of the cohesive energy U and atomic weight M as

c ¼
2U

M

� �1=2

ð7Þ

The cohesive energy may be related to the atomic volume V, pair distribution function

g(r), pair potential �(r) and Avogadro number No by

U ¼
2�N2

o

V

Z 1

o

gðrÞ’ðrÞr2dr ð8Þ

The enthalpy of vapourisation �g
lH is also given by

�g
l H ¼ RT�

2�N2
o

V

Z 1

o

gðrÞ’ðrÞr2 dr ¼ RT�U

� U since RT � jUj

ð9Þ
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Thus, equation (7) becomes

c ¼
2�g

1H

M

� �1=2

ð10Þ

and the temperature coefficient of sound velocity based on equation (10) is

@c=@Tð Þp¼ �cCP=2�l
gH ð11Þ

Table 1. Temperature coefficients of sound velocity (@c/@T)P calculated from model theories for liquid
metals at the melting temperature.

Metal –(@c/@T)P �(@c/@T)P �(@c/@T)P �(@c/@T)P �(@c/@T)P �(@c/@T)P

ms�1K�1 m s�1K�1 m s�1K�1 m s�1K�1 m s�1K�1 m s�1K�1

aFrom �e
bFrom �l

gH cFrom �,c,CP
dFrom � eFrom �, z� Experimental

Li – 0.66 0.63 1.70 2.51 0.60
Be – 0.39 0.60 1.03 1.49 0.72
Na 4.80 0.46 0.35 1.26 2.55 0.44
Mg 0.13 0.41 1.07 0.91 1.72 0.58
Al 1.11 0.24 1.99 0.98 1.37 0.48
Si 2.55 0.18 0.89 �0.93
K 4.45 0.39 0.41 0.84 1.46 0.59
Ca – 0.26 0.21 0.57 0.75 0.49
Mn – 0.28 0.26 0.88 1.24 0.15–0.59
Fe 0.33 0.24 0.14 0.72 1.17 0.50
Co 0.52 0.18 1.19 0.71 1.20 0.46
Ni 0.24 0.20 0.46 0.76 1.39 0.39
Cu 0.59 0.14 0.87 0.55 0.78 0.49
Zn – 0.25 0.81 0.47 0.89 0.34
Ga 0.99 0.15 0.46 0.25 0.39 0.26
Ge – 0.11 0.28 – – �3.50
Se – 0.09 0.06 0.62 1.47 1.07
Rb 2.32 0.25 0.27 0.49 0.84 0.34
Sr – 0.22 0.14 0.44 0.83 0.31
Mo �0.01 0.12 1.26 0.34 0.58 0.47
Ag 0.63 0.14 0.73 0.39 0.56 0.39
Cd – 0.19 0.81 0.35 0.54 0.39
In 0.71 0.14 0.55 0.26 0.41 0.29
Sn 0.56 0.11 0.50 0.23 0.49 0.28
Sb 0.16 0.13 0.20 – – �0.23
Te – 0.14 �0.02 – – �0.97
Cs – 0.23 0.22 0.49 0.86 0.30
Ba – 0.21 0.0002 0.27 0.57 0.18
La 0.15 0.10 0.04 0.20 0.35 0.08
Ce 0.09 0.11 �0.01 – – �0.18
Pr 0.15 0.14 0.03 0.47 0.84 0.08
Yb 0.06 0.17 0.17 0.43 1.30 0.20
Ta 0.03 0.08 0.74 0.32 0.56 0.26
W – 0.06 0.71 0.31 0.56 0.47
Pt 0.02 0.08 0.52 0.48 0.86 0.24
Au 0.49 0.08 0.91 0.29 0.40 0.57
Hg – 0.18 0.61 0.21 0.42 0.48
Tl 0.26 0.11 0.40 0.23 0.46 0.23
Pb 0.39 0.11 0.48 0.22 0.32 0.28
Bi 0.29 0.11 0.36 0.21 0.31 0.04
Pu – 0.10 �0.03 – – �0.08

a Gitis and Mikhailov’s approach (electrical resistivities); bGitis and Mikhailov (vapourisation enthalpies); cTsagareishvili’s
approach; dModified Rosenfeld’s approach; eModified Ascarelli’s approach.
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Using equations (10) and (11), we calculate sound velocities and temperature
coefficients ð@c=@TÞP at the melting temperature for the liquid metals listed in tables 1
and 2. The results are summarised in tables 1 and 2. Vapourisation enthalpies and

isobaric heat capacities used in the calculations were taken from the compilation by Barin

[4]. Values for selenium and tellurium are based on the hexamer and dimer, respectively,

as the principal vapour species. Velocities of sound estimated from vapourisation
enthalpies are compared with measured values in figure 1.

2.3. Gitis and Mikkhailov’s approach [5]

The temperature dependence of the electrical conductivity � is determined by the

relation

� ¼ z�2 ð12Þ

where z is the number of valence electrons per atom and � the Debye temperature.
Differentiation of equation (12) gives

1

�

@�

@T

� �
P

¼
1

z

@z

@T

� �
p

þ
2

�

@�

@T

� �
p

ð13Þ
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Figure 1. Comparison between theoretical and experimental velocities of sound in liquid metals at the
melting temperature.
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Expressing the Debye temperature in terms of the velocity of sound, viz.,

c ¼
kB
h

� �
4�

3No

� �1=3
M

�

� �1=3

� ð14Þ

where kB and h are Boltzmann’s and Planck’s constants, respectively. Differentiation of
equation (14) gives

1

c

@c

@T

� �
P

¼ �
1

3�

@�

@T

� �
P

þ
1

�

@�

@T

� �
P

ð15Þ

Equation (15) may be substituted in equation (13) to give:

@c

@T

� �
P

¼
c

2�

@�

@T

� �
P

þ
�c

3
�

c

2z

@z

@T

� �
P

ð16Þ

Regarding the electron concentration as constant and since the electrical resistivity �e
is the reciprocal of the electrical conductivity, equation (16) may be expressed as

@c

@T

� �
P

¼ �
c

2�e

@�e

@T

� �
P

þ
�c

3
ð17Þ

Using equation (17), we calculate ð@c=@TÞP for 26 liquid metals at the melting
temperature using data for �e and ð@�e=@TÞP from Iida and Guthrie [6] together

with expansivities from the compilation by Crawley [7]. The results are summarised

in table 1.

2.4. Rosenfeld’s approach (hard-sphere model)

Following Rosenfeld [8], the velocity of sound may be expressed as

c ¼ Sð�Þ
kBT

M

� �1=2

ð18Þ

where

Sð�Þ ¼ pð�Þ þ �p0ð�Þ þ
2

3
pð�Þ2

� �1=2

ð19Þ

and p(�) is the Carnahan–Starling compressibility factor, which is expressed in terms of
the packing factor � of the hard-sphere fluid and is defined by

pð�Þ ¼
1þ �þ �2 � �2

ð1� �Þ3
ð20Þ

and where the first derivative of the of the compressibility factor is

p0ð�Þ ¼
@pð�Þ

@�

� �
¼

2ð2þ 2�� �2Þ

ð1� �Þ4
ð21Þ

Temperature dependence of sound velocity in liquid metals 601

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
3
8
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



The packing fraction � is defined in terms of the hard-sphere diameter a, viz.,

� ¼
�a3No�

6M
ð22Þ

Hard-sphere diameters at the melting temperature conform closely with the

relationship a3/Vm¼ (1.484� 0.025)� 10�24, equivalent to a packing fraction

�¼ 0.468. Using equations (18)–(22), we calculate velocities of sound at the melting

temperature, as shown in table 2.

Table 2. Comparison between theoretical and experimental velocity of sound of liquid metals at the melting
temperature.

ac ms�1 bc ms�1 cc ms�1 dc ms�1 ec ms�1 fc ms�1 cexpt m s�1

Li 6690 5484 5492 5128 4892 6898 4554
Na 3009 2725 2699 2451 2335 3501 2526
K 2101 1990 1966 1720 1673 2694 1876
Rb 1613 1297 1260 1183 1156 1821 1251
Cs 1058 1022 1004 860 838 1442 983
Be 8282 8923 8825 10928 9988 10579 9104
Mg 3304 4177 4126 4600 4050 4945 4065
Ca 2818 3573 3533 4356 3147 4202 2978
Sr 1827 2348 2316 2061 1947 2663 1902
Ba 1531 1832 1807 1499 1379 1751 1331
Al 4826 3990 3944 5934 4450 4843 4561
Si 5291 – – 6662 4922 – 3920
Mn 2997 3565 3508 3536 3200 3593 3381
Fe 3679 3861 3812 4555 3896 4118 4200
Co 3669 3715 3674 4287 3687 4097 4031
Ni 3692 3679 3638 3703 3507 4367 4047
Cu 3158 3136 3050 3022 3101 3644 3440
Zn 1920 2208 2182 2736 1563 2829 2850
Ga 2764 1413 1398 2672 1662 2259 2873
Ge 3056 2770 – 3365 2454 2833 2693
Se 793 1695 – 2508 1743 3031 1100
Mo 3495 3728 3685 4804 3610 3769 4502
Ag 2229 2294 2268 2157 2236 2962 2790
Cd 1357 1559 1542 1862 1573 2135 2237
In 2038 1312 1297 1693 1255 1985 2320
Sn 2222 1399 1383 1862 1299 1866 2464
Sb 1900 1848 – 2409 1654 2214 1988
Te 1072 1614 – 2509 1181 1775 889
La 2456 1988 1967 1958 1731 2407 2002
Ce 2427 1875 – 1705 1499 2433 1693
Pr 2190 1983 1960 2153 1799 2142 1925
Yb 1248 1708 1688 1672 1431 2004 1274
Ta 2876 2891 2859 3492 2958 3314 3303
W 2966 3035 3001 3957 3219 3519 3277
Pt 2338 2196 2283 2629 2234 2428 3053
Au 1880 1768 1748 1759 1858 2264 2568
Hg 785 733 724 1245 858 1124 1511
Tl 1306 1140 1127 1524 1140 1601 1650
Pb 1348 1155 1142 1569 1103 1597 1821
Bi 1372 1095 1082 1989 1142 1468 1640
Pu 1659 – – – – – 1195

aGitis and Mikhailov approach (vapourisation enthalpies); bRosenfeld’s approach; cModified Rosenfeld’s approach;
dAscarelli’s approach; eAscarelli’s approach using z�;

fModified Ascarelli’s approach.
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2.5. Modified Rosenfeld’s approach

Taking account of the temperature dependence of the hard-sphere diameter, Yokoyama

[9] has modified equation (19) as

Sð�Þ ¼ pð�Þ þ �p0ð�Þ þ
2

3
pð�Þ þ 3�p0ð�Þ

@ ln a

@ ln T

� �
V

� �2
 !1=2

ð23Þ

The logarithmic temperature coefficient of the hard-sphere diameter may be derived
from the empirical expression of Protopapas et al. [10],

a ¼ ao 1� 0:112
T

Tm

� �1=2
 !

ð24Þ

in which

ao ¼ 1:0788
No�m
M

� ��1=3

ð25Þ

and

@ln a

@ lnT

� �
V

¼ �0:056
ao
a

� � T

Tm

� �1=2

ð26Þ

The ao values determined using equation (25) are equivalent to a value of �¼ 0.468
as applicable at the melting temperature, where �m is the liquid density at Tm.

Equation (24) allows hard-sphere diameters to be determined at a given temperature,

the resultant values together with melt densities and equation (22) being used to
determine � at these temperatures. Equation (26) is used together with the calculated a

and ao values to obtainð@ln a=@lnTÞV.� values are used together with equations (20) and

(21) to determine p(�) and p0(�), respectively. S(�) may now be determined from
equation (23) and thence c using equation (18). Excluding the anomalous metals, we

calculate velocities of sound values as a function of temperature for 35 metallic liquids

and thence ð@c=@TÞP at the respective melting temperatures. The results are summarised
in tables 1 and 2. Velocities of sound calculated from the modified Rosenfeld hard-

sphere model are compared with measured values in figure 1. For purposes of clarity,

the individual elements are not labelled in figure 1.

2.6. Ascarelli’s approach

Ascarelli [11] has shown that a simple model of hard spheres immersed in a uniform
(without gradients) background potential is able to describe the velocity of sound and

its temperature dependence in liquid metals of widely differing atomic masses, densities

and melting temperatures. Using the hard-sphere equation of state of Reiss et al. [12],
together with an assumed packing fraction of 0.45 as applicable to all metals at their

melting point and a constant value of � ¼ 1.15, Ascarelli’s expression for the velocity of

sound is

c ¼
�kBT

M

ð1þ 2�Þ2

ð1� �Þ4
þ

2zEF

3kBT
�

4ATm

3T

� �
Vm

V

� �1=3
" #( )1=2

ð27Þ
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where �¼CP/CV is the ratio of isobaric to isochoric heat capacities, EF the Fermi
energy and Vm/V the ratio of molar volumes at the melting temperature Tm and
temperature T, respectively. The coefficient A is defined by

A ¼ 10þ ð2zEF=5kBTÞ ð28Þ

The temperature dependence of the packing fraction was determined in terms of the
packing fraction at constant volume �V using

� ¼
�VVm

V
ð29Þ

where

ð1þ �vþ �v2Þ

ð1� �vÞ2

� �
¼ 3:7þ ð6:3T=TmÞ ð30Þ

Using equations (27)–(30), Ascarelli determined ð@c=@TÞP accounting for the role of
electrons and reported (@c/@T)P for a number of elements, Rb (�0.3), Zn (�0.2),
In (�0.14) and Sn (�0.15), all in units of m s�1K�1. At the melting temperature
equation (27) becomes

c ¼ �kBTm=M 27þ ð2zEF=15kBTmÞ½ � ð31Þ

Using equation (31) together with Fermi energies and � values from the literature, we
calculate velocities of sound at the melting temperature using both chemical and
effective valences. The results are summarised in table 2.

2.7. Modified Ascarelli’s approach

Yokoyama [13,14] has also accounted for the influence of electrons on the velocity of
sound in metallic liquids using modifications of the Ascarelli theory. Essentially these
include use of the Protopapas procedure for estimating the temperature dependence of
the hard-sphere diameter, use of the more robust Carnahan–Starling equation of state,
a value of �¼ 0.463 as applicable at Tm, and a nonconstant �. Additionally, a more
comprehensive account is taken of the uniform background potential. The velocity of
sound is given by

c2

ðkBT=MÞ
¼

1

kBT

� �
�0:031

z

3
� 4

0:916z4=3 þ 1:8z2BH

9a0

� �
þ
22:1z5=3

9a02

� �
þ Sð�Þ2 ð32Þ

In equation (32), the Wigner–Seitz radius is defined by a0 ¼ (3M/4�No�)
1/3 and the

term BH denotes the electrostatic energy of the point-ion model. Following Yokoyama
[14] the explicit expression for BH in terms of, a0m,the Wigner–Seitz radius at the melting
temperature is

BH ¼
a0 7m
6

0:031z

a0m
þ

0:916z4=4 þ 1:8z2

a0 2m

� �
�
4:42z5=3

a0 3m
�
pð�ÞkBT

a0m

� �
ð33Þ

Application of equations (32) and (33) requires a knowledge of the valence of the
liquid metal. In this work we employ the effective valence z� as determined from the
one-component plasma model of the liquid state (OCP). The OCP model is defined in
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terms of a system of point-like ions each carrying a charge ze moving in a uniform
background potential and having the same number density, ionic mass and temperature
as a real fluid. The OCP is characterised by a plasma parameter �

0

¼ (z�e)
2/a0kBT, where

e is the electronic charge. �
0

values and hence effective valences may be obtained
either from diffraction measurements where the value of �

0

is selected so as to well fit
the first peak of the experimental structure factors [15] or by fitting the entropy of the
OCP system to the observed entropy [16]. In this work we employ the latter method for
37 liquid metals. Measured entropies and melting temperatures were taken from the
compilation by Barin [4]. Electronic contributions to the entropy were calculated using
Fermi energies from the literature [17,18]. Where appropriate, magnetic contributions
to the entropy were considered following Harder and Young [19]. In this work, we use
S(�) as determined from the modified Rosenfeld approach together with equations (32)
and (33) to calculate velocities of sound and their temperature dependence for the
nonanomalous metals. The results are summarised in tables 1 and 2.

3. Results and discussion

Calculation of ð@c=@TÞP using the approach suggested by D. S. Tsagareishvili and G. V.
Tsagareishvili amounts to the determination of the difference between the terms
�2c3=CP and �c=2. The former term having the larger absolute magnitude in the
majority of cases and including terms raised to high powers suggests an inherent
sensitivity of theoretical ð@c=@TÞP to errors in the measured values of � and c. In nearly
half of the elements considered, this approach overestimates ð@c=@TÞP as compared to
measured values. ð@c=@TÞP for the alkali metals are in reasonable accord with
measurement and the approach correctly predicts a positive (although small)
temperature coefficient for Te, Ce and Pu. In the majority of cases, ð@c=@TÞP calculated
from vapourisation enthalpies tend to underestimate this quantity when compared with
measured values. ð@c=@TÞP values estimated for the alkali and alkali earth elements
using vapourisation enthalpies however, may be regarded as reasonable. Sound
velocities at the melting temperature estimated from vapourisation enthalpies on the
one hand and from density data using the modified Rosenfeld hard-sphere model on the
other hand are compared with measured values in figure 1. It is apparent that sound
velocities estimated from the former data result in better estimates than those predicted
from density data. ð@c=@TÞP estimated from electrical resistivity and expansivity data
tend to overestimate ð@c=@TÞP as compared to measured values. Such overestimation is
markedly the case for the alkali metals Na, K and Rb. In nearly half of the elements
examined, the modified Rosenfeld’s approach overestimates ð@c=@TÞP, as is readily
apparent in the case of the alkali and alkali earth metals. For all the elements examined
in the present study, the hard-sphere approach results in ð@c=@TÞP values that decrease
progressively with increasing temperature. ð@c=@TÞP values reported in table 1 are those
at the respective melting temperatures. For the liquid alkali metals, accurate sound
velocities over extended temperature ranges are available and these indicate that
ð@c=@TÞP increases progressively with increasing temperature [20, 21]. ð@c=@TÞP
estimated from the modified Ascarelli’s approach, i.e., accounting for the role of
electrons consistently overestimates the temperature coefficient of the velocity of sound
as compared with measured values. Comparison of calculated and measured melting
temperature sound velocities of the alkali and alkali earth metals indicates that when
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account is taken of electronic effects, a significant overestimation occurs. Excluding

electronic effects the hard-sphere model with allowance for the temperature dependence

of the hard-sphere diameter gives a better description of the melting point

sound velocities of these two groups of metals. For the liquid transition metals,

on the other hand, the effects caused by accounting for electronic effects are small,

typically increasing sound velocity values by �12%. In the context of accounting for the

effects of electrons on calculated sound velocities, the difficulty of assigning effective

valences to the transition metals is all important.

4. Conclusions

Temperature coefficients of sound velocities ð@c=@TÞP have been calculated from a

number of model theories. At present, none of those examined may be considered to

adequately represent measured ð@c=@TÞP values. Simple procedures using vaporisation

enthalpies yield better estimates of sound velocities at the melting point than those

obtained from the more involved hard-sphere approach.
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